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Abstract

We consider transfer orbits between two coplanar, confocal circular orbits. We calculate
the semimajor axis and eccentricity of the elliptical transfer orbit, as well as the energy
and velocity magnitude changes required to accomplish the transfer. We assume the
energy changes (i.e., thruster firings) occur over a short time interval compared to the
relevant orbital periods. We then consider the consequences of small errors in the
thruster firings.
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1 Motivation

Consider two coplanar, circular, confocal orbits of semimajor axes a1 and a2 > a1. Suppose
we wish to transfer an artificial satellite from the inner to the outer orbit and do it in
such a way that the transfer orbit is elliptical (as opposed to hyperbolic or parabolic) and
confocal to the circular orbits. This type of orbit was first considered by W. Hohmann
in 1925. At some point during the inner circular orbit, a thruster firing perpendicular to
the radius vector occurs, at which point the satellite’s motion switches to the pericenter of
the elliptical transfer orbit. The ellipse is such that its apocenter distance coincides with
the outer circular orbit distance. After coasting from the pericenter out to the apocenter,
another thruster firing (again in the orbital plane and perpendicular to the instantaneous
radius vector) places the satellite on the outer circular orbit. This process is symmetric,
so one can just as easily transfer from an outer orbit to an inner one, requiring only a few
changes in sign in what follows. Hence, what are the semimajor axis a and eccentricity e
of the transfer orbit, and what are the changes in energy and velocity magnitude required
to perform the transfer?

2 Orbital Elements of the Transfer Orbit

Now, the pericenter of the transfer ellipse (call it P) coincides with the radius of the smaller
circle, a(1 − e) = a1, and the apocenter (call it A) coincides with the radius of the larger
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circle, a(1 + e) = a2. Thus, we may combine these two relations to find the semimajor axis
and eccentricity of the transfer orbit:

a =
1
2
(a1 + a2) (1)

e =
a2 − a1

a1 + a2
(2)

Thus, we have a tidy result. The semimajor axis of the transfer ellipse is the average of the
radii of the circular orbits, and the eccentricity is the fractional difference of those radii.

The amount of time spent in the transfer orbit is, by definition, half the orbital period of
the transfer orbit. Kepler’s third law can be written

μ = n2a3 (3)

where μ = G(m1 + m2), n = 2π/T is the mean motion, T is the orbital period. Using (1),
we therefore find

T

2
= π

√
a3

μ
= π

√
(a1 + a2)

3

8μ
(4)

3 Energy Considerations

The specific energy E of a two-body orbit is

E =
1
2
v2 − μ

r
(5)

where v is the magnitude of the relative velocity vector, and r is the magnitude of the
relative position vector. The specific energy is the energy of the two-body system, Etot,
divided by the reduced mass,

m1m2

m1 + m2
E =

1
2

m1m2

m1 + m2
v2 − Gm1m2

r
= Etot (6)

One can also show that

v2 = μ

(
2
r
− 1

a

)
(7)

which is a statement of conservation of energy known as the vis viva integral. Combining
(5) and (7) lets us write the specific energy as

E =
−μ

2a
(8)

Thus, the difference in energy (henceforth we shall assume “energy” means “specific en-
ergy”) between the two circular orbits is

ΔE =
μ

2

(
1
a1

− 1
a2

)
(9)
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4 Energy Changes to Accomplish the Transfer

From (8) and (1), we can write the energy of the transfer orbit,

E =
−μ

a1 + a2
(10)

Hence, we discover that the changes in energy that must occur at P and at A are, from
(10) and (8),

ΔEP = E − EP =
μ

2a1

a2 − a1

a1 + a2
= −eEP (11)

and

ΔEA = EA − E =
μ

2a2

a2 − a1

a1 + a2
= −eEA (12)

where EP = −μ
2a1

and EA = −μ
2a2

are the energies of the respective circular orbits. It is quite
delightful that the changes in energy are just the respective orbital energies scaled only by
the transfer orbit eccentricity. One can easily show that (11) and (12) add up to (9):

ΔEP + ΔEA = −e(EP + EA) = ΔE (13)

5 Changes in Relative Velocity Magnitude to Accomplish the

Transfer

Let us assume that the changes in orbital energy are accomplished by thruster firings which
are very short compared to the orbital periods involved. Then, since the changes occur at
pericenter and apocenter of the elliptical transfer orbit, our assumptions let us put ṙ = 0,
and the energy changes involve only the kinetic energies and hence the relative velocity
magnitudes.

5.1 Using Physics

Differentiating (5), we have

dE
dt

= v
dv
dt

+
μ

r2

dr
dt

= v
dv
dt

(14)

since during the thruster firings ṙ = 0. Integrating through the thruster firing from (say)
times t0 to t0 + Δt,

E0+ΔEˆ

E0

dE =

v0+Δvˆ

v0

vdv (15)

we have

ΔE =
1
2
(v0 + Δv)2 − 1

2
v2
0 =

1
2
Δv2 + v0Δv (16)
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where v0 = v(t0) is the magnitude of the velocity the instant before the thruster firing,
and Δv is the velocity magnitude impulse arising from a change in energy ΔE . Thus, the
changes in relative velocity magnitude are

Δv = −v0 ±
√

2ΔE + v2
0 (17)

at the respective orbital locations. At P,

v0(P ) =
√

μ

a1
(18)

which we obtained from eq. (7) for the interior circular orbit, while at A we similarly find

v0(A) =

√
μ

a

1 − e

1 + e
=
√

2μ
a1 + a2

a1

a2
(19)

for the elliptical orbit. Plugging (18) and (19), and (11) and (12), into (17), we find that

ΔvP = −
√

μ

a1

(
1 ±√

1 + e
)

= −
√

μ

a1

(
1 ±

√
2a2

a1 + a2

)
(20)

and

ΔvA = −
√

μ

a2

(√
2a1

a1 + a2
± 1
)

(21)

We must choose the signs in (20) and (21) to match physical circumstances. The first
thruster firing is in the same direction as the direction of motion around the inner circular
orbit, so the change in velocity magnitude is positive. Likewise, the second thruster firing
is also along the direction of motion, so that change, too, is positive. Therefore, since we
are considering the case a2 > a1, the changes in velocity magnitude are

ΔvP =
√

μ

a1

(√
1 + e − 1

)
=
√

μ

a1

(√
2a2

a1 + a2
− 1
)

(22)

and

ΔvA =
√

μ

a2

(
1 −

√
2a1

a1 + a2

)
(23)

In each case the change in velocity magnitude is a fraction of the respective circular velocity
vc =

√
μ/a, the fractions being the expressions in parentheses in eqs. (22) and (23).

5.2 Using Algebra

The previous derivation uses conservation of energy as the starting point. It is therefore
satisfying in that is makes use of a fundamental physical principle. If we are willing to forgo
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physics, then here is a short algebraic derivation. From (7) the circular velocities at P and
at A are

vc(P ) =
√

μ

a1
and vc(A) =

√
μ

a2
(24)

The velocities on the transfer orbit at those same points are (again using (7))

vP =

√
μ

a

1 + e

1 − e
=
√

2μ
a1 + a2

a2

a1
(25)

vA =

√
μ

a

1 − e

1 + e
=
√

2μ
a1 + a2

a1

a2
(26)

Thus, the changes in velocity magnitude are just

ΔvP = vP − vc(P ) (27)

and

ΔvA = vc(A) − vA (28)

which yield eqs. (22) and (23).

6 Expansions

Suppose a1 � a2. Then we can expand on ε = a1/a2, and (22) and (23) become

ΔvP =
√

μ

a1

(√
2 − 1

)
−
√

2μ
a2

(
1
2
√

ε − 3
8
ε3/2 +

5
16

ε5/2 − · · ·
)

(29)

which we can also write as

ΔvP =
√

μ

a1

(√
2 − 1

)
−
√

2μ
a1

(
1
2
ε − 3

8
ε2 +

5
16

ε3 − · · ·
)

(30)

and

ΔvA =
√

μ

a2
−
√

2μ
a2

(√
ε +

1
2
ε3/2 − 3

8
ε5/2 + · · ·

)
(31)

which, similarly, we can write as

ΔvA =
√

μ

a2
−
√

2μ
a1

(
ε +

1
2
ε2 − 3

8
ε3 + · · ·

)
(32)

From (29) and (31) we see that the thruster firings consist of a large kick (of order the
circular velocity at the corresponding radius) followed by higher order terms.
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The ratio of velocity kicks is

ΔvA

ΔvP
=

√
ε

√
1 + ε −√

2ε√
2 −√

1 + ε
(33)

A series expansion of (33) yields

ΔvA
ΔvP

= u

[
1√
2−1

(
1 −√

2u
)

+ 1
2

√
2

(
√

2−1)2

(
u2 − u3

)
+1

8

√
2(3−

√
2)

(
√

2−1)3

(
u4 − u5

)
+ 1

16

√
2(7−4

√
2)

(
√

2−1)4

(
u5 − u6

)
+ 1

128

√
2(85−57

√
2)

(
√

2−1)5

(
u7 − u8

)
+ 1

256

√
2(295−206

√
2)

(
√

2−1)6

(
u9 − u10

)
+ · · ·

] (34)

where we have set u =
√

ε =
√

a1/a2. We carry out the expansion to an impractical number
of terms in order to show the interesting pattern of the expansion coefficients.

7 Effects of Errors in the Velocity Changes

7.1 Impulse Error at Pericenter

7.1.1 Perturbed Transfer Orbit Elements

Suppose, as is always the case in the real world, an error occurs and the change in velocity
magnitude imparted by the first thruster firing is in error by some small amount, say
ΔvP = Δv0

P + δvP , where Δv0
P is the desired change in velocity given by (22) and δvP is

the error. What are the effects on the transfer orbit semimajor axis and eccentricity, and
on the outer orbit?

Using (22), we find the variation in ΔvP is

δΔvP = δvP =
∂ΔvP

∂a2
δa2 =

√
μ

2
a1

a2

1
(a1 + a2)

3 δa2 (35)

Thus, we can write the resulting error in the radius of the resulting circular orbit (assuming,
ideally, that a compensating adjustment of the thrust at A circularizes it),

δa2 =
[
μ

2
a1

a2

1
(a1 + a2)3

]−1/2

δvP (36)

or

δa2

a2
=

√
2(1 + ε)3

ε

δvP

vc(A)
=

√
2
ε

(
1 +

3
2
ε +

3
8
ε2 − 1

16
ε3 + · · ·

)
δvP

vc(A)
(37)

where vc(A) =
√

μ/a2 is the unperturbed outer orbit circular velocity and ε = a1/a2.
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From eq. (2) for e, we have the error in the transfer orbit eccentricity,

δe =
2a1

(a1 + a2)
2 δa2 =

2ε
(1 + ε)2

δa2

a2
= 2
(
ε − 2ε2 + 3ε3 − 4ε4 + · · ·)δa2

a2
(38)

while the corresponding error in the transfer orbit semimajor axis is

δa =
1
2
δa2 (39)

7.1.2 Circularize the Outer Orbit at the Perturbed Radius

What is the impulse required to circularize the outer orbit? That would be the difference
in velocities between the circular orbit of perturbed radius a2 + δa2 and the apocenter of
the perturbed transfer ellipse of semimajor axis a + δa. Thus, from (24) and (26), we may
write

ΔvA =
√

μ

a2 + δa2
−
√

2μ
a1 + a2 + δa2

a1

a2 + δa2
(40)

which, to first order, becomes

ΔvA = Δv0
A − δΔvA =

√
μ

a2

[
1 −

√
2a1

a1 + a2
−
(

1 −
√

2a1

a1 + a2

a1 + 2a2

a1 + a2

)
δa2

2a2
+ · · ·

]
(41)

or

ΔvA =
√

μ

a2

[
1 −

√
2ε

1 + ε
−
(

1 −
√

2ε
1 + ε

2 + ε

1 + ε

)
δa2

2a2
+ · · ·

]
(42)

where Δv0
A is the unperturbed circularizing impulse, eq. (23). Hence, the adjustment

impulse — the small change in velocity that we must subtract from the unperturbed velocity
change given by (23) — is, to first order,

δΔvA =
1
2

√
μ

a2

(
1 −

√
2ε

1 + ε

2 + ε

1 + ε

)
δa2

a2
+ · · · (43)

Substituting eq. (36) for δa2, we can express the corrections in terms of the original velocity
error at pericenter. Then eq. (42) becomes

ΔvA

vc(A)
=

(
1 −

√
2ε

1 + ε

)
−
[√

1 + ε

2ε
(1 + ε) − (2 + ε)

]
δvP

vc(A)
+ · · · (44)

Another way to achieve the same results is to consider instead the variation of ΔvA when
a2 varies. From (24), (26), and (28),

−δΔvA = −∂ΔvA
∂a2

δa2

= −δa2
∂

∂a2

[√
μ
a2

(
1 −

√
2a1

a1+a2

)]
=

√
μ
a2

(
1 −

√
2a1

a1+a2

a1+2a2
a1+a2

)
δa2
2a2

(45)
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which we see is identical to (43). Yet a third way is to consider eq. (26) and plug in the
variations directly. We have

vA =

√
μ

a

1 − e

1 + e
=

√
μ

a + δa

1 − e − δe

1 + e + δe
(46)

for the perturbed transfer orbit aphelion velocity. Use (1) and (2) for a and e, then (38)
and (39) for δe and δa. One finds

vA =

√
2μ

a1 + a2 + δa2

a1(a1 + a2) − a1δa2

a2(a1 + a2) + a1δa2
=
√

2μ
a1 + a2

a1

a2

(
1 − a1 + 2a2

a1 + a2

δa2

2a2
+ · · ·

)
(47)

The circular velocity at the perturbed radius is

vc(a2 + δa2) =
√

μ

a2 + δa2
=
√

μ

a2

(
1 − δa2

2a2
+ · · ·

)
(48)

The difference is then the circularization impulse:

ΔvA = vc(a2 + δa2) − vA (49)

Upon substituting (47) and (48), one finds again eq. (41).

7.1.3 Eliminating the First-Order Term

We see from (43) and (44) that for some value of the ratio a1/a2 the first-order correction
will be zero. Solving the expression in brackets in (44) is equivalent to solving

2 (1 + ε)3 = ε (4 + 2ε)2 (50)

Eq. (50) has three real solutions with two of them being negative and hence unphysical.
Thus, the adjustment δΔvA is a positive quantity when

a1

a2
<

2
3

√
10cos

(
1
3
arctan

(
3
√

111
))

− 5
3

= 0.170086 . . . (51)

Therefore, oddly enough, if the ratio of unperturbed circular orbits is the value given by
equality in eq. (51), then the adjustment impulse is second order in the perturbation δa2.
Numerically, the expansion (41) becomes

ΔvA = vc(A)

[
0.46081 − 0.09008

(
δa2

a2

)2

+ 0.12142
(

δa2

a2

)3

− · · ·
]

(52)

and eq. (44) becomes

ΔvA = vc(A)

[
0.46081 − 1.69691

(
δvP

vc(A)

)2

+ 9.92701
(

δvP

vc(A)

)3

− · · ·
]

(53)

where vc(A) =
√

μ/a2 is the unperturbed outer orbit circular velocity.

9



7.1.4 An Eccentric Perturbed Outer Orbit

The foregoing consider the consequences that result from an error δv at the pericenter point
P of the transfer orbit, assuming the ΔvA impulse is adjusted to compensate so that we end
at A with a circular orbit now of radius a2 + δa2. If the velocity error at P is not detected
or for some other reason the impulse at A is not adjusted to compensate, then application
of the unperturbed ΔvA from eq. (23) will result in an eccentric orbit. Now, the velocity at
the apocenter of the perturbed transfer orbit is given to first order by (47). Application of
the planned thrust Δv0

A at the apocenter, eq. (23), results in the new velocity magnitude

v = vA + Δv0
A (54)

We find

v =
√

μ

a2

(
1 −

√
2a1

a1 + a2

a1 + 2a2

a1 + a2

δa2

2a2
+ · · ·

)
= vc(A)

(
1 −

√
2ε

1 + ε

2 + ε

1 + ε

δa2

2a2
+ · · ·

)
(55)

This velocity is now the pericenter or apocenter of the final orbit, which is an ellipse.

We would like to know the orbital elements of this ellipse. The apocenter or pericenter
distance is, respectively, r = a(1 ± e). Thus, we can write

a(1 ± e) = a2 + δa2 (56)

From the vis viva integral (7), we have

v2 = μ

(
2

a(1 ± e)
− 1

a

)
=

μ

a

1 ∓ e

1 ± e
(57)

Now we may solve (56) and (57) to get

±e = 1 − a2 + δa2

μ
v2 (58)

and

a =
a2 + δa2

2 − v2

μ (a2 + δa2)
(59)

Using (55) for v, we find the first-order results

±e =

(√
2ε

1 + ε

2 + ε

1 + ε
− 1

)
δa2

a2
+ · · · =

(
2
√

2ε − 1 + · · ·
) δa2

a2
+ · · · (60)

and

a

a2
= 1 +

(
2 −

√
2ε

1 + ε

2 + ε

1 + ε

)
δa2

a2
+ · · · = 1 + 2

(
1 −

√
2ε + · · ·

)δa2

a2
+ · · · (61)

If the right hand side of (60) is positive/negative, the thruster firing point is the final ellipse
apocenter/pericenter.
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7.2 Impulse Error at Apocenter

Suppose the impulse at P occurs as planned, but the thrust at the transfer orbit apocenter
has an error. An impulse error at A, δvA, will cause the outer orbit to be eccentric rather
than circular. The velocity magnitude after the erroneous thruster firing is then

v = ΔvA + δvA (62)

where the unperturbed circularizing impulse ΔvA is given by (23). Similar to eq. (56), we
have

a(1 ± e) = a2 (63)

while eq. (57) still holds. Solving (57) and (63), we have

±e = 1 − a2

μ
v2 = 1 −

(
v

vc(A)

)2

(64)

and

a

a2
=

1
2 − a2

μ v2
=

1

2 −
(

v
vc(A)

)2 (65)

Substituting (62) for v and (23) for ΔvA, we find

±e = 1−
(

ΔvA + δvA

vc(A)

)2

= 1−
(

1 −
√

2ε
1 + ε

)2

−2

(
1 −

√
2ε

1 + ε

)
δvA

vc(A)
−
(

δvA

vc(A)

)2

(66)

(exact) and

a
a2

= 1

2−
�

ΔvA
vc(A)

�2 + ΔvAv2
c (A)

(2v2
c (A)−Δv2

A)2 δvA + · · ·

= 1+ε

1+2
√

2ε(1+ε)−ε
+ 2(1 + ε) 1−2

√
2ε(1+ε)+ε�

1+2
√

2ε(1+ε)−ε
�2

δvA
vc(A) + · · ·

(67)

where vc(A) =
√

μ/a2 and (67) is to first order in δvA. If the ratio ε = a1/a2 is small, then

±e = 2
(√

2ε − ε + · · ·
)
− 2
(
1 −

√
2ε + · · ·

) δvA

vc(A)
−
(

δvA

vc(A)

)2

(68)

and

a

a2
=
(
1 − 2

√
2ε + 10ε + · · ·

)
+ 2
(
1 − 5

√
2ε + 36ε + · · ·

) δvA

vc(A)
+ · · · (69)

11


	Motivation
	Orbital Elements of the Transfer Orbit
	Energy Considerations
	Energy Changes to Accomplish the Transfer
	Changes in Relative Velocity Magnitude to Accomplish the Transfer
	Using Physics
	Using Algebra

	Expansions
	Effects of Errors in the Velocity Changes
	Impulse Error at Pericenter
	Perturbed Transfer Orbit Elements
	Circularize the Outer Orbit at the Perturbed Radius
	Eliminating the First-Order Term
	An Eccentric Perturbed Outer Orbit

	Impulse Error at Apocenter 


